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Abstract

Objective: Cognitive dispersion across neuropsychological measures within a single testing session is a promising marker predictive of cog-
nitive decline and development of Alzheimer’s disease (AD). However, little is known regarding brain changes underlying cognitive
dispersion, and the association of cognitive dispersion with in vivo AD biomarkers and regional cerebral blood flow (CBF) has received limited
study. We therefore examined associations among cognitive dispersion, amyloid-beta (Aβ) positivity, and regional CBF among older adults
free of dementia.Method:One hundred and forty-eight Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants underwent neuro-
psychological testing and neuroimaging. Pulsed arterial spin labeling (ASL)magnetic resonance imaging (MRI) was acquired to quantify CBF.
Florbetapir positron emission tomography (PET) imaging determined Aβ positivity. Results: Adjusting for age, gender, education, and mean
cognitive performance, older adults who were Aβþ showed higher cognitive dispersion relative to those who were Aβ-. Across the entire
sample, higher cognitive dispersion was associated with reduced CBF in inferior parietal and temporal regions. Secondary analyses stratified
by Aβ status demonstrated that higher cognitive dispersion was associated with reduced CBF among Aβþ individuals but not among those
who were Aβ-. Conclusions: Cognitive dispersion may be sensitive to early Aβ accumulation and cerebrovascular changes adjusting for dem-
ographics and mean neuropsychological performance. Associations between cognitive dispersion and CBF were observed among Aβþ indi-
viduals, suggesting that cognitive dispersionmay be amarker of brain changes among individuals on the AD continuum. Future studies should
examine whether cognitive dispersion predicts brain changes in diverse samples and among those with greater vascular risk burden.
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Introduction

There is an important need to identify early cognitive changes
in individuals at risk for dementia prior to the development of sig-
nificant cognitive and functional decline. Cognitive function mea-
sured by comprehensive neuropsychological evaluation is typically
expressed as mean level of performance within domains such as
memory, attention, and executive function. However, there has
been growing recognition that intraindividual variability in neuro-
psychological performance within a single testing session (Bangen
et al., 2019; Gleason et al., 2018; Koscik et al., 2016; Malek-Ahmadi
et al., 2017), may be sensitive to early cognitive changes and may
reflect subtle decline in cognition that can be detected before tradi-
tional neuropsychological thresholds for cognitive impairment
are met.

Intraindividual variability has two main operationalizations
including dispersion and inconsistency. In contrast to dispersion
(which examines within-person variability across tasks), inconsis-
tency measures within-person variability on a single task. In the

present study, we focus on dispersion. Although some variability
across domains is seen in normal cognitive profiles, increased vari-
ability has been found to be associated with decreased neurological
integrity (Bangen et al., 2019; Malek-Ahmadi et al., 2017). Indeed,
greater cognitive dispersion has been associated with an increased
likelihood of being classified as having AD (Halliday et al., 2018)
and greater dementia incidence at follow-up (Watermeyer et al.,
2021). Studies examining brain changes underlying greater cogni-
tive dispersion in aging, dementia risk, and neurodegenerative dis-
ease have shown that elevated cognitive dispersion is associated
with faster rates of cerebral atrophy in the medial temporal lobes
(Bangen et al., 2019), disruptions in functional connectivity net-
works (Meeker et al., 2021), and reduced integrity of white matter
pathways interconnecting cortical regions mediating executive
function and attention (Sorg et al., 2021). In addition, an autopsy
study showed that greater cognitive dispersion was significantly
associated with more severe neurofibrillary tangle pathology and
trended toward an association with more severe neuritic plaques
(Malek-Ahmadi et al., 2017). However, findings from a study
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examining intraindividual variability and cerebrospinal fluid
(CSF) based markers of amyloid-beta (Aβ) found that cognitive
dispersion was not significantly associated with CSF Aβ
(Watermeyer et al., 2020). We know of no published studies that
have examined the association of cognitive dispersion and in vivo
brain measures of Aβ using positron emission tomography (PET)
imaging. In addition, to the best of our knowledge, no published
studies have examined the association between cognitive
dispersion and subtle cerebrovascular changes including cerebral
blood flow (CBF) measured with arterial spin labeling (ASL) mag-
netic resonance imaging (MRI).

In the present study, we sought to determine whether cognitive
dispersion is associated with cerebral amyloidosis in vivo by exam-
ining whether older adults without clinical dementia who are Aβ-
positive (Aβþ) on PET imaging demonstrate higher cognitive
dispersion relative to those who are Aβ negative (Aβ-). In the
present study, we focused on dispersion given that data from a sin-
gle task with various intervals suitable to calculate inconsistency
(e.g., a reaction time task with several trials) was not available
for analysis. In addition, to further elucidate mechanisms under-
lying increased cognitive dispersion, we examined associations
between cognitive dispersion and CBF across our entire sample
of older adults as well as the subsample who was Aβþ. We hypoth-
esized that higher cognitive dispersion would be associated with:
(1) PET Aβ accumulation; and (2) reduced CBF in AD-vulnerable
regions, particularly among those individuals who are Aβþ.

Method

The ADNI dataset

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a pub-
lic–private partnership, led by Principal Investigator Michael W.
Weiner, MD. This study was approved by the Institutional
Review Board at the ADNI study sites. Treatment of human par-
ticipants during this study was in full accordance with ethical stan-
dards set forth by the Helsinki Declaration.

The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org.

Participants

Specific enrollment criteria for ADNI have been previously
described in detail elsewhere (Bangen et al., 2019). Briefly, partic-
ipants fromADNI were 55–90 years old, had≥6 years of education
or work history equivalent, were fluent in English or Spanish, had a
Geriatric Depression Scale <6, had a Hachinski Ischemia Scale <5,
adequate vision and hearing to perform neuropsychological tests,
were in generally good health and without significant head trauma
or neurologic disease, were stable on permitted medications, and
had a reliable study partner. ADNI includes participants with nor-
mal cognition,MCI, and dementia. The current study included 148
participants from ADNI GO/ADNI 2 cohorts when ASL MRI was
collected. Participants were included if they had ASL data collected
within 12 months of their baseline visit, did not have dementia at
their baseline study visit, and had available baseline neuropsycho-
logical testing and florbetapir PET imaging data. Although ADNI

is a longitudinal study, the present analyses examined cross-sec-
tional associations of baseline data.

Cognitive dispersion index

The cognitive dispersion index reflects variability across cognitive
measures at a single time point. We calculated the index of
dispersion using procedures previously described (Bangen et al.,
2019). Briefly, standard summary measures from tests designed
to assess multiple different cognitive abilities were included in
the cognitive dispersion index. Six neuropsychological measures
were selected given their routine use in assessing early cognitive
changes in AD, administration across all ADNI waves, and sam-
pling of three different domains of cognition (i.e., language,
processing speed/executive function, and episodic memory).
These sixmeasures were as follows: (1) Animal Fluency, total score;
(2) 30-item Boston Naming Test (BNT) total score; (3) Trail
Making Test (TMT), Part A; time to completion; (4) TMT, Part
B; time to completion; (5) Rey Auditory Verbal Learning Test
(AVLT) 30-min delayed free recall; number of words recalled;
and (6) AVLT recognition; number of words correctly recognized.

Prior to calculating the cognitive dispersion index, individual
raw scores for each measure were converted into age-, gender-,
and education-adjusted Z scores with a mean of 0 and standard
deviation of 1 using regression coefficients derived from robust
cognitively normal participants (n= 385) who had at least 1 year
of follow-up and remained cognitively normal throughout their
participation in the ADNI study (Bangen et al., 2019; Edmonds
et al., 2015). The two TMT Z scores were multiplied by −1 so that
higher Z scores represent better performance for all scores. The
intraindividual standard deviation across the 6 Z scores was calcu-
lated to create the cognitive dispersion index. A high score on the
cognitive dispersion index reflects greater variability across neuro-
psychological measures whereas a low score on the cognitive
dispersion index indicates more consistency across measures
(regardless of scores on the individual neuropsychological mea-
sures included in the cognitive dispersion index). In addition,
mean level of cognitive performance was calculated as the average
of the 6 Z scores that were included in the cognitive
dispersion index.

Cognitive status

Participants diagnosed with dementia by ADNI were excluded
from the current study. To determine cognitive status (MCI vs.
normal cognition), actuarial neuropsychological MCI criteria were
applied to all participants in this sample (Edmonds et al., 2015).
Participants were considered MCI if they performed >1 SD below
the age-/education-/sex-adjusted mean on: (1) 2 neuropsychologi-
cal measures within the same cognitive domain; or (2) at least 1
measure across all 3 sampled cognitive domains. The six neuro-
psychological test scores included in the cognitive dispersion index
were considered in the diagnostic criteria for MCI.

T1-weighted anatomical and ASL MRI data acquisition and
processing

Detailed information describing the imaging data acquisition and
processing is available online at www.loni.usc.edu. MR imaging
was performed on a 3.0 Tesla scanner and structural MRI and
ASL scans were collected during the same session.

A T1-weighted 3D MPRAGE sequence was collected using the
following parameters: field of view= 256 mm, repetition time
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= 2300 ms, echo time= 2.98 ms, flip angle= 9°, and resolution
= 1.1 x 1.1 x 1.2mm3. Structural scans were motion corrected, skull
stripped, segmented, and parcellated using FreeSurfer Version 5.1
(surfer.nmr.mgh.harvard.edu; Fischl et al., 2002, 2004).

Pulsed ASL scans were collected using QUIPS II with thin-slice
TI1 periodic saturation with echo-planar imaging (Luh et al.,
1999). Scan parameters include the following: inversion time of
arterial spins (TI1) = 700 ms, total transit time of spins (TI2)=
1900 ms, tag thickness = 100 mm, tag to proximal slice gap=
25.4 mm, repetition time= 3400 ms, echo time= 12 ms, field of
view= 256 mm, matrix= 64 x 64, 24 4-mm thick axial slices
[52 tag þ control image pairs], time lag between slices= 22.5 ms.

As previously described (Bangen et al., 2021; Sanchez et al.,
2020; Thomas et al., 2021), ASL data processing was largely auto-
mated and involved motion correction, aligning each ASL frame to
the first frame using a rigid body transformation, and least squares
fitting using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/). Perfusion-
weighted images were computed as the difference of the mean-
tagged and mean-untagged ASL images and were intensity scaled
to account for signal decay during acquisition and to generate
intensities in meaningful physiological units. After geometric dis-
tortion correction, ASL images were aligned to structural T1
images using FSL. In order to minimize the effects of lower perfu-
sion in white matter on CBF estimates, a partial volume correction
was performed that assumed that CBF in gray matter is 2.5 times
greater than in white matter. The partial volume corrected perfu-
sion-weighted images were normalized by the reference image (i.e.,
an estimate of blood water magnetization) to convert the signal
into physical units (ml/100 g tissue/min). ADNI quality control
procedures to determine a global pass/fail rating were based on vis-
ual inspection of signal uniformity, geometrical distortions, gray
matter contrast, and presence of large artifacts. A rating of “unus-
able” in any of these categories resulted in a global “fail” and that
participant was excluded from the present study.

FreeSurfer-derived anatomical regions of interest (ROIs) were
applied to CBF maps to extract regional CBF estimates for each
participant. Our primary analyses examined the following five a
priori ROIs: (1) hippocampus; (2) inferior parietal lobe (IPL);
(3) inferior temporal gyrus (ITG); (4) medial orbitofrontal cortex
(mOFC); and (5) rostral middle frontal gyrus (rMFG). These
regions were selected given prior work showing these regions
are vulnerable to early AD-related change (Dickerson et al.,
2011) as well as to be consistent with our previous studies exam-
ining CBF in ADNI (e.g., Sanchez et al., 2020; Thomas et al., 2021).
CBF ROI values were residualized by precentral CBF, which was
selected to serve as a reference region as it is not thought to be
impacted in early AD (allowing for adjustment of individual varia-
tion in CBF that is likely not due to AD pathologies) as well as
to be consistent with previous ADNI ASL studies that used this
approach (Mattson et al., 2014; Yew & Nation., 2017). Mean
CBF corrected for partial volume effects was extracted for each
of the ROIs and reference region for each hemisphere separately.
To reduce the number of statistical comparisons, averaged bilateral
CBF estimates for each ROI were used as the dependent variable in
analyses. Bilateral CBF estimates were calculated by averaging the
mean CBF of each hemisphere. If participants were missing base-
line ASL but had ASL within the first year of their baseline visit, the
first occasion of ASL data was used in analyses. In addition, for use
in secondary analyses examining brain morphometry, the mean
bilateral cortical thickness of IPL, ITF,mOFC, and rMFGwas com-
puted by averaging thickness estimates for the left and right hemi-
spheres for each ROI. Total hippocampal volume was computed by

summing the volume of left and right hippocampi and was normal-
ized by estimated total intracranial volume.

Florbetapir PET data acquisition and processing

PET scanning with an 18F-florbetapir tracer was used to measure
amyloid burden. A detailed description of ADNI florbetapir PET
imaging data acquisition and processing can be found online
(www.loni.usc.edu). Briefly, florbetapir scans were co-registered,
averaged, reoriented into a standard 160 × 160 × 96 voxel image
grid with 1.5 mm3 voxels and smoothed to a uniform isotropic res-
olution of 8 mm full width at half maximum. Each participant’s
first florbetapir image was co-registered with the T1-weighted
image.

A cortical summary standardized uptake value ratio (SUVR)
was calculated by dividing the mean florbetapir uptake across four
main cortical regions (i.e., frontal, anterior/posterior cingulate, lat-
eral parietal, and lateral temporal cortices) by whole cerebellar
(white and gray matter) florbetapir uptake. Greater cortical Aβ
load is thought to increase retention of florbetapir. Aβ positivity
was established using the recommended threshold for cross-sec-
tional florbetapir analyses of 1.11 using the whole cerebellum as
the reference region (Landau et al., 2014).

Statistical analyses

Demographic and clinical characteristics were examined with
descriptive statistics. T tests for continuous variables and chi-
square (X2) tests for categorical variables were used to compare
Aβþ versus Aβ- groups on demographics and clinical variables.
Analysis of covariance (ANCOVA) was used to compare Aβþ
and Aβ- groups in terms of cognitive dispersion after adjusting
for age, gender, education, and mean cognitive performance. In
addition, hierarchical linear regression, adjusting for age, gender,
education, and mean cognitive performance was used to examine
the associations between the cognitive dispersion index and CBF in
the five a priori ROIs: hippocampus, IPL, ITG, mOFC, and rMFG.
In addition, we performed linear regressions substituting regional
volume or cortical thickness of the ROI as the dependent variable
in place of CBF to determine whether dispersion was significantly
associated with morphometry. For all models, covariates were
entered on Step 1 and cognitive dispersion was entered on Step
2. In a series of sensitivity analyses, in an attempt to further clarify
the potential role of cognitive dispersion, we re-ran our primary
models reversing the position of mean cognitive performance
and cognitive dispersion. That is, we entered age, gender, educa-
tion, and cognitive dispersion on Step 1 and mean cognitive per-
formance on Step 2. Finally, to explore whether the pattern of
findings was driven by those participants who were Aβþ (on
the AD continuum as evidenced by significant cerebral amyloido-
sis), secondary analyses stratified by Aβ status (Aβþ and Aβ-) were
performed. To address potential inflation of type I error resulting
from multiple comparisons, we applied the Benjamini–Hochberg
procedure (Benjamini & Hochberg, 1995) to our results. We
assessed results when the false discovery rate (FDR) was controlled
at 0.05 and 0.10.

All analyses were performed using Statistical Package for the
Social Sciences (SPSS) version 26 (SPSS IBM, New York, USA).
Figures were made with R version 4.5.0 (https://cran.r-project.
org/) and SPSS. An alpha = 0.05 was set for statistical significance;
all tests were two-tailed.
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Results

Participant characteristics

Participants’ demographic and clinical data are presented in
Table 1. One hundred and forty-eight older adults ranging in
age from 55 to 85 (mean ± SD = 70.98 ± 6.3) comprised the
present sample. There were 72 women (48.6%), the sample
was 93.9% white, and the average number of years of formal
education was approximately 17 (SD = 2.51). Compared to
Aβ- participants, the Aβþ group were significantly older, more
likely to be characterized as MCI, and exhibited poorer cognitive
scores (i.e., lower mean level of cognitive performance and
poorer performance on each of the individual cognitive mea-
sures included in the cognitive dispersion index with the excep-
tion of animal fluency on which the groups did not differ). There
were no significant group differences in terms of education, gen-
der, or race (p-values > 0.05).

Cognitive dispersion by Aβ status

After adjusting for age, gender, education, and mean cognitive
performance, there was a significant main effect of Aβ status
on cognitive dispersion such that participants who were Aβþ
showed higher cognitive dispersion relative to those who were
Aβ- (F(1,142) = 9.132, p = .003) (See Figure 1).

Associations of cognitive dispersion and regional CBF

Hierarchical linear regression models showed that, across the
entire sample, after adjusting for age, gender, education, and
mean cognitive performance, higher cognitive dispersion was
significantly associated with reduced CBF in IPL (β =−.183,
p = .027; Overall model: R2 = .117, F(5,142) = 3.748, p = .003)
and ITG (β =−.214, p = .011; Overall model: R2 = .091,
F(5,142) = 2.858, p = .017). There were no significant associa-
tions between cognitive dispersion and CBF in mOFC, rMFG,

or hippocampal regions (all p’s > .05) (See Table 2 and
Figure 2). When we performed sensitivity analyses in which
we re-ran our primary models reversing the position of mean
cognitive performance and cognitive dispersion, results
remained similar to the primary models. That is, mean level
of cognitive performance related to hippocampal CBF whereas
cognitive dispersion was associated with CBF in IPL and ITG.
There were no other significant associations between mean
level of cognitive performance or cognitive dispersion and
CBF. See Supplemental Material file for results of these sensi-
tivity analyses.

Table 1. Demographics for overall sample and by Aβ PET imaging status

Entire sample (n= 148) Aβþ (n= 63) Aβ- (n= 85) t or χ2 95% CI Cohen’s d or phi p

Age, years 70.98 (6.83) 73.45 (6.55) 69.15 (6.49) −3.97 [−6.44, −2.15] 0.66 <0.001
Education, years 16.68 (2.51) 16.48 (2.85) 16.82 (2.24) 0.80 [−0.48, 1.17] 0.14 0.42
Gender (% Female) 48.6% 42.9% 52.9% 1.47 – 0.10 0.23
Race (%) 3.96 – 0.16 0.27

White 93.9% 92.1% 95.3% – –
Asian 1.4% 0% 2.4% – –
Black 2.7% 4.8% 1.2% – –
More than one 2.0% 3.2% 1.2% – – –

Aβþ (%)a 42.6% – – – – –
MCI (%) 28.4% 41.3% 18.8% 8.97 – 0.25 0.003
Mean cognitive performanceb −0.17 (0.54) −0.28 (0.59) −0.09 (0.49) 2.16 [0.02, 0.37] 0.36 0.03
Cognitive dispersion 1.02 (0.67) 1.27 (0.62) 0.83 (0.43) −3.82 [−0.67, −0.21] 0.69 <0.001
Animal fluency −0.18 (1.04) −0.32 (0.10) −0.07 (1.07) 1.44 [−0.09, 0.58] 0.24 0.15
Boston Naming Test −0.39 (1.41) −0.72 (1.75) −0.14 (1.05) 2.36 [0.09, 1.08] 0.42 0.02
Trails A −0.11 (1.12) −0.40 (1.41) 0.10 (0.79) 2.52 [0.11, 0.89] 0.45 0.01
Trails B −0.32 (1.22) −0.61 (1.52) −0.10 (0.10) 2.33 [0.08, 0.94] 0.42 0.02
AVLT delayed recall −0.39 (1.18) −0.78 (1.15) −0.10 (1.12) 3.59 [0.30, 1.05] 0.60 <0.001
AVLT recognition −0.50 (1.20) −0.86 (1.42) −0.23 (0.94) 3.04 [0.22, 1.03] 0.54 0.003

Note. Results from t tests for continuous variables and chi-square tests for dichotomous variables. Data are summarized as mean (standard deviation), unless otherwise indicated. Effects sizes
(Cohen’s d for t tests and phi for chi-square tests) are reported as absolute values. Significant group differences (p< .05) appear in bold font. CI = confidence interval; Aβ = amyloid beta; MCI =
mild cognitive impairment; AVLT= Rey Auditory Verbal Learning Test.
aAmyloid negativity versus positivity was based on the recommended threshold for cross-sectional florbetapir analyses of 1.11 using the whole cerebellum as the reference region (Landau et al.,
2014).
bMean cognitive performance is the mean of the six age-, sex-, and education-adjusted neuropsychological Z scores included in the cognitive dispersion index. The six scores were Animal
Fluency, total score; 30-itemBoston Naming Test (BNT) total score; Trail Making Test (TMT), Part A; time to completion; TMT, Part B; time to completion; Rey Auditory Verbal Learning Test (AVLT)
30-min delayed free recall; number of words recalled; and AVLT recognition; number of words correctly recognized.

Figure 1. Cognitive dispersion by amyloid-beta (Aβ) positivity versus negativity. The
lines represent group medians and the boxes represent the interquartile range; the y
axis represents the model predicted cognitive dispersion values after controlling for
age, gender, education, and mean cognitive performance.
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Associations of cognitive dispersion and brain morphometry

After adjusting for age, gender, education, and mean cognitive per-
formance, cognitive dispersion was not significantly associated
with hippocampal volume or cortical thickness of IPL, ITG,
mOFC, or rMFG regions (all p-values> 0.05; See Table 3).

Secondary analyses stratified by Aβ status

Analyses were conducted to examine whether the associations
among cognitive dispersion and regional CBF and volume/cortical
thickness were driven by those participants who were considered
Aβþ. Among Aβþ individuals (n= 62), adjusting for age, gender,
education, and mean cognitive performance, higher cognitive
dispersion was significantly associated with reduced IPL CBF
(β=−.341, p= .011; Overall model: R2= .113, F(5,57)= 1.457, p
= .218) and reduced ITG CBF (β=−.295, p= .028; Overall model:
R2= .100, F(5,57)=1.265, p= .292). See Figure 2. Cognitive
dispersion was not significantly associated with CBF in hippocam-
pal, mOFC, or rMFG regions. When examining volume/cortical
thickness, cognitive dispersion was not significantly associated
with hippocampal volume or thickness of IPL, OTG, mOFC, or
rMFG, ITG. Among Aβ- individuals (n= 84), there were no sig-
nificant associations between cognitive dispersion and CBF across
ROIs or between cognitive dispersion and volume/cortical thick-
ness (all p-values> 0.05) (See Tables 4 and 5 and Figure 2).

False discovery rate

Statistical significance of all reported findings was retained under a
0.10 FDR but not maintained under a 0.05 FDR.

Discussion

In a sample of well-characterized older adults free of clinical
dementia, we found that those individuals who were Aβþ on
PET imaging showed greater cognitive dispersion than their coun-
terparts who were Aβ-. In addition, greater cognitive dispersion
was significantly associated with reduced CBF in IPL and ITG
regions after adjusting for age, gender, education, and mean cog-
nitive performance. Secondary analyses stratified by Aβ status
revelated that these associations were driven primarily by Aβþ
individuals rather than Aβ- individuals. Across the entire sample
and within the Aβþ and Aβ- subgroups, there were no significant
associations between cognitive dispersion and brain morphometry
(i.e., cortical thickness and volume).

The study of cognitive dispersion has a long history in the field
of psychology (Vance et al., 2021). It has been long believed that a
large degree of test scatter or variation characterizes some types of
psychological disorders (Plake et al., 1981) and many commonly
administered neuropsychological measures include indices of scat-
ter or discrepancy as standardized variables (e.g., Wechsler Adult
Intelligence Scale beginning with the Revised (WAIS-R) version,
Delis-Kaplan Executive Function Scale, California Verbal
Learning Test), although base rate information is not always avail-
able (Jacobson et al., 2009). Nonetheless, there is recent growing
interest in using cognitive dispersion indices to predict future
decline and cognitive outcomes in various neurological disorders
including AD, human immunodeficiency virus, and traumatic
brain injury. Increased cognitive dispersion may manifest in a
reduced ability to integrate cognitive processes, which could then
lead to reduced cognitive control and functional inefficiency
(Fellows & Schmitter-Edgecombe, 2015). It has been theorized that
increasing cognitive dispersion may reflect a disruption of neuralTa
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networks (Jacobson et al., 2009; Parasuraman&Martin, 1994), and
several neuroimaging studies have shown that increasing intrain-
dividual variability is associated with reduced functional connec-
tivity (Lin & McDonough, 2022). AD has long been
conceptualized as involving a disconnection syndrome
(Delbeuck et al., 2003) given that early AD is characterized by
the loss of cortico-cortical projections that promote interactions
of multiple brain regions. Recent neuroimaging studies have
shown disruption of multiple networks including the frontopari-
etal and default mode networks in AD (Contreras et al., 2020;
Meeker et al., 2021). The current findings suggest that cognitive
dispersion is elevated in individuals who are Aβþ and that reduced
CBF may play a role in increasing dispersion, although future
longitudinal studies are needed to confirm this.

Previous studies have shown that greater cognitive dispersion
at baseline predicts progression to MCI (Gleason et al., 2018),
faster rates of medial temporal atrophy (Bangen et al., 2019),
and increased risk of incident MCI (Holtzer et al., 2020). Our cur-
rent findings suggest that higher cognitive dispersion is also asso-
ciated with cerebral amyloidosis, which dovetails with previously
published studies including an autopsy study showing that
greater cognitive dispersion was significantly associated with
more severe neurofibrillary tangle pathology and trended toward
an association with more severe neuritic plaques (Malek-Ahmadi
et al., 2017) and a second study what showed that CSF measured
Aβ moderated the relationship between cognitive dispersion and
resting-state functional connectivity (Meeker et al., 2021).
However, our findings differ from another recent study which
reported that cognitive dispersion was not associated with CSF
markers of AD pathology (Watermeyer et al., 2020).
Differences between the current study and that by Watermeyer
and colleagues (2020) may account for the discrepant findings
including the method of measuring amyloid status (CSF vs.
PET) and the type and number of cognitive tests used to calculate
the cognitive dispersion index (Watermeyer and colleagues used
more measures than the 6 included in the present study and they
also included experimental measures).

In the present study we found greater cognitive dispersion was
associated with hypoperfusion in posterior but not anterior
regions, which is in line with previous MRI studies showing brain
changes in posterior regions in AD risk (Brickman et al., 2015;

Yew & Nation, 2017). Previous research examining small vessel
cerebral vascular disease as measured by white matter hyperinten-
sities (WMH) has shown normal aging-related increases in WMH
volume in anterior regions but AD-specific increases in WMH in
posterior regions (Brickman et al., 2015). Our current finding is
also in line with a previous ADNI ASL study that examined the
same 5 a priori regions we studied in the present study and found
that the only region that showed CBF differences between Aβþ
older adults free of dementia versus participants with AD dementia
was the inferior parietal region. In addition, individuals with
AD showed reduced CBF in hippocampus, inferior parietal, and
inferior temporal regions relative to Aβ- older adults but there were
no CBF differences among the cognitive groups in frontal regions
(Yew & Nation., 2017). Our finding of significant associations
between higher cognitive dispersion and reduced CBF in posterior
but not frontal regions is in line with previous research within the
ADNI sample that focused on group differences in CBF based on
cognitive status (i.e., unimpaired cognition, objectively defined
subtle cognitive decline [Obj-SCD], andMCI). This previous study
(which had some overlap with the current study’s sample) showed
that those with Obj-SCD had altered CBF in the IPL and hippo-
campus relative to a cognitively normal group, suggesting early
neurovascular dysfunction in these key regions may precede later
cognitive impairment (Thomas et al., 2021). Similar to the present
study, Thomas and colleagues did not find significant differences
between cognitive groups in CBF in frontal regions.

Cognitive dispersion was not associated with morphometry
including regional gray matter volume (hippocampus) or cortical
thickness (IPL, ITG, mOFC, rMFG), consistent with our previous
findings showing no cross-sectional associations between baseline
cognitive dispersion and morphometry (Bangen et al., 2019).
However, in our previous study we found that higher cognitive
dispersion predicted faster rates of medial temporal lobe atrophy
at 24-month follow-up in the ADNI cohort (Bangen et al., 2019).
This pattern of findings suggests that cognitive dispersion is a
sensitive marker of future neurodegeneration. This previously
published paper (Bangen et al., 2019) included 736 participants
some of which overlapped with the present study, although did
not examine the majority of the regions included in the current
paper. The present findings that cognitive dispersion is associated
with reduced CBF but not morphometry at baseline suggests that

Figure 2. Scatterplot depicting the association between cognitive dispersion and CBF across the entire sample for inferior parietal (A) and inferior temporal (B) cortices by
amyloid status. The x axes depict model predicted cognitive dispersion values adjusting for age, gender, education, and mean level of cognitive performance. The y axes depict
regional CBF residualized by precentral CBF. Shaded area represents 95% confidence intervals.
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Table 3. Hierarchical linear regression models for association of cognitive dispersion and regional volume/cortical thickness adjusting for demographics and mean level of cognitive performance

Block 1

Hippocampal volume
R2= .182

F(4,143)= 7.979, p =<.001

IPL thickness
R2= .114

F(4,143)= 4.621, p= .002

ITG thickness
R2 = .199

F(4,143)= 8.867, p =<.001

mOFC CBF
R2= .044

F(4,143)= 1.628, p= .170

rMFG CBF
R2= .043

F(4,143)= 1.595, p= .179

B SE p sr B SE p sr B SE p sr B SE p sr B SE p sr

Age −.343 .084 <.001 −.310 −.005 .002 .001 −.259 −.009 .002 <.001 −.357 .002 .002 .158 .116 −.001 .001 .239 −.097
Gender 1.352 1.128 .233 .091 .034 .022 .128 .120 −.036 .024 .140 −.111 −.004 .021 .856 −.015 .034 .016 .037 .173
Education .115 .226 .612 .038 .003 .004 .516 .051 .001 .005 .794 .020 .001 .004 .903 .010 −.001 .003 .666 −.035
Mean cognitive performance 28.582 10.283 .006 .210 .290 .204 .156 .112 .539 .219 .015 .184 −.356 .194 .068 −.150 .018 .148 .903 .010

Block 2
R2= .204, R2 change= .022 F(5,

142)= 7.266, p =< .001
R2= .121, R2 change= .007
F(5,142)= 3.919, p= .002

R2= .201, R2 change = .003
F(5,142)= 7.164, p =< .001

R2= .049, R2 change= .005
F(5,142) = 1.454, p= .209

R2 = .050, R2 change = .007
F(5,142)= 1.482, p= .199

Age −.322 .082 <.001 −.289 −.005 .002 .002 −.247 −.008 .002 <.001 −.348 .002 .002 .197 .106 −.001 .001 .299 −.085
Gender 1.225 .024 .276 .082 .033 .022 .145 .115 −.037 .024 .131 −.114 −.003 .021 .897 −.011 .033 .016 .043 .167
Education .072 .180 .749 .024 .002 .005 .586 .043 .001 .005 .848 .014 .001 .004 .837 .017 −.002 .003 .597 −.043
Mean cognitive performance 24.915 −.146 .017 .180 .251 .207 .227 .095 .511 .223 .024 .172 −.325 .197 .102 −.135 −.010 .150 .949 −.005
Cognitive dispersion −2.057 −.289 .054 −.146 −.022 .021 .296 −.082 −.016 .023 .489 −.052 .018 .020 .382 .072 −.016 .015 .312 −.083

SE= standard error; CBF= cerebral blood flow; IPL= inferior parietal lobe; ITG=inferior temporal gyrus; mOFC=medial orbitofrontal cortex; rMFG= rostral middle frontal gyrus; sr= semi partial correlation coefficient. For gender, women are the reference
group. Bold values are statistically significant (p< .05). Cognitive dispersion was calculated by using the intraindividual standard deviation across 6 baseline Z scores.

Table 4. Hierarchical linear regression models for association of cognitive dispersion and regional cerebral blood flow adjusting for demographics and mean level of cognitive performance in Aβþ individuals

Block 1

Hippocampal CBF
R2= .178

F(4,58) = 3.139, p= .021

IPL CBF
R2= .006

F(4,58)= .930, p= .984

ITG CBF
R2= .020

F(4,58) = .293, p= .881

mOFC CBF
R2 = .054

F(4,58) = .834, p= .509

rMFG CBF
R2= .135

F(4,58) = 2.254, p= .074

B SE p sr B SE p sr B SE p sr B SE p sr B SE p sr

Age .063 .107 .560 .070 .051 .107 .636 .062 −.107 .122 .381 −.115 .083 .103 .425 .103 −.142 −.196 .125 −.190
Gender 1.115 1.408 .432 .094 .524 1.399 .709 .049 .384 1.595 .811 .031 −1.773 1.351 .194 −.168 2.492 1.196 .042 .255
Education .658 .248 .010 .317 .075 .246 .763 .040 .045 .280 .873 .021 .103 .237 .667 .055 .109 .210 .606 .063
Mean Cognitive Performance −31.418 11.319 .007 −.330 −2.039 11.250 .857 −.024 4.763 12.823 .712 .048 −5.880 10.858 .590 −.069 −2.138 9.614 .825 −.027

Block 2
R2 = 0.207, R2 change= .029
F(5,57)= 2.972, p= .019

R2= .113, R2 change= .107
F(5,57)= 1.457, p= .218

R2= .100, R2 change= .080
F(5,57)= 1.265, p= .292

R2= .057, R2 change = .003
F(5,57)= .689, p= .634

R2= .136, R2 change= .002
F(5,57)= 1.801, p= .127

Age .091 .108 .404 .099 .099 .103 .341 .120 −.059 .119 .622 −.062 .090 .105 .396 .110 −.148 .093 .119 −.195
Gender 1.275 1.400 .366 .107 .803 1.338 .551 .075 .660 1.547 .671 .054 −1.730 1.365 .210 −.163 2.459 1.209 .047 .250
Education .664 .245 .009 .319 .084 .235 .722 .045 .054 .271 .842 .025 .104 .239 .665 .056 .108 .212 .613 .063
Mean Cognitive Performance −35.108 11.506 .003 −.360 −8.466 10.997 .445 −.096 −1.617 12.716 .899 −.016 −6.867 11.220 .543 −.079 −1.366 9.937 .891 −.017
Cognitive Dispersion −1.635 1.136 .156 −.170 −2.848 1.086 .011 −.327 −2.828 1.256 .028 −.283 −.437 1.108 .694 −.051 .342 .982 .728 .043

Aβ= amyloid beta; SE= standard error; CBF= cerebral blood flow; IPL= inferior parietal lobe; ITG= inferior temporal gyrus; mOFC=medial orbitofrontal cortex; rMFG= rostral middle frontal gyrus; sr= semi partial correlation coefficient. For gender,
women are the reference group. Bold values are statistically significant (p< .05). Cognitive dispersion was calculated by using the intraindividual standard deviation across 6 baseline Z scores.
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ASL CBF is a useful marker of early and subtle brain changes that
may be observed prior to significant atrophy, and dovetails with
our previous research showing hypoperfusion predicts later neuro-
degeneration (Bangen et al., 2021).

Cognitive dispersion indices may be influenced by relative
differences in the difficulty, sensitivity, and score distributions of
the component tasks as well as floor or ceiling effects (Cherry
et al., 2002; Jacobson et al., 2009). However, intraindividual vari-
ability indices have been used as a means of identifying subtle
decline in cognitive skills relative to those cognitive abilities that
may be more resilient to neurodegenerative processes (Jacobson
et al., 2009). In the early phases of neurodegeneration, an individ-
ual may show mild declines in one or two cognitive abilities while
other abilities may be less affected. Given that some individuals in a
preclinical stage of ADmay not show a significant memory impair-
ment and may perform within the intact or normal range on indi-
vidual cognitive tests, it may be that intraindividual variability
metrics are more sensitive than individual tests scores, particularly
in identifying individuals who are experiencing very subtle decline
and/or who are high functioning (Jacobson et al., 2009; Storandt
et al., 2006).

Although comparing different dispersion metrics was not a pri-
mary purpose for the current study, in an effort to determine
whether our findings may relate to differences in sensitivity to
AD across tasks (mean level of performance) rather than puremea-
sures of dispersion, we calculated dispersion two additional ways
and re-ran our primary models with these alternative dispersion
metrics. Given that episodic memory is typically affected early
in AD together with our results suggesting that the two AVLTmea-
sures may be more sensitive to Aβ status relative to other measures
included in the dispersion index (see Table 1), we re-ran our mod-
els with alternative dispersion indices that varied based on whether
or how the AVLT measures were included. First, we calculated a
dispersion variable not including the two AVLT measures. That
is, we calculated a dispersion variable with the following four var-
iables: BNT, Animals Fluency, Trails A, and Trails B. Results from
the model with inferior parietal CBF as the dependent variable
remained significant (p= .006) although the results from the
model with inferior temporal CBF as the dependent variable
was somewhat attenuated and was a trend (p= .080). As with
our primary models, the models with hippocampal CBF and fron-
tal CBF as the dependent variables were not significant. Next, we
created a dispersion variable using the same 6 measures including
in our original variable but partialed out mean AVLT performance.
The pattern of results remained similar to our primary analyses
although results were attenuated with cognitive dispersion relating
to CBF at a trend level (p= .052 for inferior parietal CBF and
p= .072 for inferior temporal lobe). Given that differences in sen-
sitivity to AD across different measures may contribute to
dispersion effects, future research should more directly compare
the predictive utility of different dispersion metrics as well of intra-
individual variability indices relative to individual test scores.

Cognitive dispersion has been measured using different
approaches across studies. Consistent with several previous stud-
ies, we assessed cognitive dispersion as within-person variability
across different neuropsychological measures (Bangen et al.,
2019; Gleason et al., 2018; Watermeyer et al., 2020) rather than
the inconsistency of trial performance across one task. Although
few studies have directly compared dispersion and inconsistency,
one previous study have found that these two methods of measur-
ing intraindividual variability are moderately correlated (r= .38 on
a choice reaction time task; r= .31 on a 1-back task) and are bothTa
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associated with increasing age and cognitive decline (Hilborn
et al., 2009). Future studies comparing dispersion and inconsis-
tency will help determine how these two metrics may complement
each other. To improve generalizability and to consider multiple
cognitive domains, we selected neuropsychological tests that are
commonly used in research and clinical settings to be included
in our dispersion metric. In addition, the approach we used to cal-
culate cognitive dispersion has been found to be particularly advan-
tageous as it can be calculated from one testing session, showing
cognitive dispersion has potential for clinical utility due to its ease
of implementation without change to standardized testing proce-
dures (Holtzer et al., 2008). Notably, however, there is not yet
consensus on how to best operationalize cognitive dispersion.
Additional studies providing empirical support for which measures
and how many measures form the optimal dispersion index, estab-
lishment of a universally acceptedmethod for calculating dispersion,
and development of normative databases will increase the utility of
dispersion in both research and clinical settings.

Strengths of the study include the well-characterized sample of
older adults; integration of multimodal imaging data including
PET Aβ, ASL perfusion, and structural MRI; and use of a sensi-
tive measure of cognitive dispersion (i.e., an intraindividual
standard deviation across multiple domains of cognitive func-
tioning). Cognitive dispersion has several advantages relative
to other proposed markers to detect early brain changes (e.g.,
PET imaging or lumbar puncture to measure CSF) including
being low-cost and noninvasive. ASL MRI has advantages over
other imaging techniques designed to measure CBF due to its
noninvasive nature (i.e., does not require injection of contrast
agent). Reduced CBF is also a well-established marker of subtle
vascular change and has been associated with poorer everyday
functioning (Sanchez et al., 2020), faster rater rates of memory
decline, neurodegeneration, and progression of small vessel dis-
ease (Bangen et al., 2021). This study expands on previous
research on cognitive functioning and CBF by linking hypoper-
fusion to increased cognitive dispersion.

It should be noted that the effects of cognitive dispersion in
our models are modest and accounted for 3–4% and 8–11% of
the variance in regional CBF across the entire sample and within
the Aβþ subgroup, respectively (entire sample: sr=−.176 for IPL
and sr=−.205 for ITG; Aβþ subgroup: sr=−.327 for IPL and sr
=−.283 for ITG). Although these are modest effects, these models
adjust for important demographic variables that influence CBF
(i.e., age, gender) and mean-level cognitive performance and find-
ings remained similar in sensitivity analyses in which the position
of cognitive dispersion and mean cognitive performance were
reversed (i.e., cognitive dispersion served as a covariate and mean
cognitive performance served as the independent variable). Taken
together, these findings provide support for the notion that cogni-
tive dispersion may have incremental utility in assessing dementia
risk although future studies comparing multiple cognitive metrics
(e.g., dispersion, inconsistency, episodic memory indices) and
additional risk factors are needed to clarify this. Limitations of
the study include a homogeneous racial/ethnic distribution and
a highly educated sample so results may not be generalizable to
groups with differing demographic characteristics. Future research
in more diverse samples is needed. Additional limitations include
the cross-sectional design. Future studies using larger samples
should examine data longitudinally to determine whether cogni-
tive dispersion predicts future changes in CBF levels, interacts with
biomarkers including Aβ levels to predict clinical outcomes, and

adds incremental value in predicting outcomes relative to other
cognitive indices and risk factors. Future research is also needed
to further evaluate the specificity and sensitivity of dispersion met-
rics in preclinical and prodromal dementia. In particular, it will be
important to examine the associations between dispersion and
biomarkers beyond Aβ including those related to cerebrovascular
disease burden.

In summary, in conjunction with previous evidence linking
cognitive dispersion to faster rates of cerebral atrophy in AD-
vulnerable brain regions (Bangen et al., 2019) and increased
AD neuropathology (Malek-Ahmadi et al., 2017), our findings
suggest that cognitive dispersion may be a useful noninvasive
marker of early cognitive and brain changes especially in the
context of those who are Aβþ. Since greater cognitive dispersion
was not associated with brain morphometry, but was associated
with reduced CBF, this indicates that cognitive dispersion may
be a marker of early vascular changes in the brain and may be
useful in identifying participants for clinical trials that target
vascular risk or amyloid although future longitudinal studies
are needed to confirm this.
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found at https://doi.org/10.1017/S1355617722000649
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